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MINIMAX.PRCCPDURES FOR TVO-VALUED DECISINN
* PROBLEMS VIEN THE SIZE OF SANVLE IS FIXED¥®

by
S. G. Allen, Jr.

1. The Minimax Solution for the Casze éf a Simole Dicﬁotcmj;,}"
The problem to be considered is a statistical deeision procedube'fbr.
choosing between two alternative actlons, Ay and A,, after taking
n independent observations on a random varladle x. The probabllity
density p(x,0) of x is known excopt for the value of a real para-
meter O which 13 sssumed to be one-dimensionalal/ The parameter
space -N-1s partitioned into two subspaces-ﬁﬁ and N, sueh that
decislon Ay 1s preferred if QsJﬂi and A, preferred if ©¢J5%,. The

2
costs of decisions Al and Ag are, respectively,

=0, 98.0-1
1.1 wl(e)
. : 2 0, 96-0'2
and
0, 9
1.2 '2(9) % ' 1
- 0, geﬂ'z ®

The motivating 1dea for Theorem A of this report is to be found
in a lot acceptance sampling procedure proposed in an unpublished
paper by Mr. Norman Rudy of Sacramento State College. Discussion
with members of the Department of Statistics, Stanford University,
in particular with Professor M. A. Girshick, was most beneficial
in the formlsa tion of the present drart of the revort.

l/ The maln results of this naper will be based on the assumption
that the probabllity distributlion of x 1s continuous. The neceasary
modification of the results for the case of discrete probabilitv
distributions will be discussed in a conclnding section of the
paper.



-2

If the parameter space consists of a simple dichotomy
(1.9.‘01 conslsts of the sinsle roint 8y, and.n,, the sinele
point 92% the minimax procedure is well kncwn. The relevant |

statistic 1s the likelihood ratio

7';' p(x,_,eg)

.:i”fllisﬁ 2,- 2(01,92).~
s v 7T‘p(x1,01)

and the decision procedure which minimizes the maximum expectéd

cost 1s to
1.4 choose Ay, if 2§ ¢, and
1.5 choose A3, 1f A > ¢,

whare the ériterion c satisfies the relation
1.6 wy(0y) Pr{agclop)z wa(0,) Fr(2>c(0g)

This value of ¢ is

1.7 c = '2(94ﬂ8
Wi(eg) (1-g)

where g is the least favofable a prior!i probability that @ ¢ 91

2. The Minimax Solution to & More General Problem. The

assumption that Ny and Ny sach consists of a single noint 1s often
a very artificial one. A more general formulation of the two-valued-
decision problem is the.fbilowing: 4. 1s an interval, @&y 1f

©80,, and @£, 4f ©7,0,, where the costs of decisions Ay and Ag



are given by 1.1, 1.2, and

2.1 Wl(oo) s VZ(QO) - Qe g/

This statement of the nroblem avoids the often unrealistic postulete
of an "indifference interval", l.e. an Interval such that decislions
Al and A2 are elther costless or equally costly 1f @ assumes a

value in'this interval. llowecver, in this uvore general formulation,
1s the likelihood ratlo teat for some QlﬁiFl and 05¢ 1, still &

: minimax docision procedure?

The fbllowinr theorem supplies*the answer.

Theorem A. Let

2.2 Ry(c,09,92,0) = %y(0) Pr[a(@;,0p)¢ cle] end

1

2.3 Ro(c,097,02,9)

wo(0) Prla(0,,85)> ¢|Q], where

015111 and 8g¢Nn. Then the 1llkellhood ratio test 1s a2 minimax

procedure if and only 1f there exists a triple (c,,09,03) such that

2 0
2.4 g’}}pRl(cO’ol’cgio) - Rl(Co,@ 9 90) 2(00’90’90 00)

max Ro(e.,09,02.0)
95:& 2\ Loy »® or

Proof of necessity:
Suppose the likelihood ratio test for some thitl, 086112,

and ¢ = ¢© is minimax. Then 2.4 follows.

=

74 It seems only reasonadble to aassume that inf '1(°) 2 w31(0,) ana
otn
2

inf wp(8) = wo(9,). With this in view, there is no loss in
etny

generality in requiring 2.1,



)

Proof of sufflciency:
Let Fy denote the llkelihood ratlo test procedure assocliated

with the triple (co,O 9°) satisfying 2.4. Then thoe expccted cost

of this procedure is given by

2.5 R(F,,G) = fwl(o) Pr[ﬂ(e‘{,o%s ¢, [0 dG(e)
N, 2 =

jwz(g) pr{2{e9,68) > ¢ J0] dc(e)
!

where dG(®) denotes any a prlori probabllity measure over{i, Since

Ri(cq,® 1,9 ) and Rp(c,, 2,93) are the maxima of the integrends
appearing in 2,5, it fbllows that

2.6 R(Fq,G)¢ fal(co,g",u,,o% dac(e) + J{Rg(co,eg,gg,eg) ac(o)
2, 1

[ 4

c 0 O
= Q1(C°,@1,92,92) [ Ra(co,g‘,gg,gl) o

If G 1s a distribution concentrating all probability at 6 and &J,
2,6 1s a strict egquality. Thererfore

2.7 max R(Fo,6) = Rylcy,09,03,89) = Rgcco,ol,ez.el)p
Let G, be the a priori disiribution given by

2.8 g = Pr(e = of)

2.9 1-g = Pri0 = 03)

where g satisfies



WE(G?L)S

- L4

WI(G%)(].-{})

2.10 Co

Clearly Fo 1s tne Bayes procedure against G.. There fore

2.11 min R(F,0,) = R(Fy,G0) »
B

whers I' 13 any decislon procedure for choosing between Aq and Age
Since G, is a distribution for which 2.6 13 a strict cquality, the

minimax property of Fo follows,

3. Assumptions Under VWhich the Likellihood Ratio Test Is a

Minimax Procedure. It is now of intcrest to examine z clegs

of distribution functions and a class of cost functions for

which condition 2.4 of Theorem A 13 aatisfled.

Conslder a famlly of probavillty measurcs dcfined by

3.1 aL (= . | OX sy
LO( !9) - w--(—To ) e d"c’o(x) &

where Y, (x) is a measure defined over an intervel X, and where

(20
3.2 wy(® =z J % avplx)
=C0

1s a bounded function of @ defined over an intervsl.nﬁé/ If u is

the sum of n independent random variables each distributed eccording

to 3.1, then u 1s distributed according to

d/ The pronerties of tnhis famlly of distribution functions are given
an extensive discussion in Section 3 of Girshick ane Savage, "Bayes
and Minimax Estimates for Quadratic Loss Punctions”, Tec-nical
Report No. S, Contract YNo. N6-ONR-251 Task III, Department of
Statiaties, Stanfbrd Tniversity, November 21, 1950o



3.3 AL{u(e) .;‘;T]é_). o aY(u) .

This 1s again the distribution family introduced in 3.l ond 3.2,
with Y(u) defined over an interval U.

In view of the form of the distributions 3,1 and 3.3, it 1s
simple to show that for every number c such that 2$c (where R 1is
defined in 1.3} there exlsts & unlque number k such that u k.
This correspondence permits the functions 2.2 and 2.3 to be

rowritten as

wl(Q) L{k|e)

3.5 Ra(k,0)

'2(0) [1-1:(1()9)3 °

These functions have the following important propertys
Lenma 1.,

Ir max R,(1,0) and max Ry(k,8) exlat, then they are, respectively,
oell, LR

mono toniec increasing and decreasing functlions of k.

Proof:
Let max Ry(k,Q) = wl(Q')L(klg'), |t -,
Qeqg .
and max Ro(k,0) = wo(0")[1-L(k]e")], o"c Ny &
Otny

Obvicusly L(k]9) is an increasing function of ¥k for any 6.
Thus for & positive

wy(6') L{kje") & wy(o?) L(k+al37) & g?x wy(8) L(k+4]0)# max R,y({k+a,Q)

-02 9:n2

wo(0MI[1-L(k|O")] ¢ wo(Q") [1-L(k-8)0")] & max wo(9)[1-L{k~s10"))
= glnl

and

qu%x Ra(k~450),

as desired.




It 1s now possible to prove the following
Theorem B. Lot ¥(u), wy(8), and wp(8) be ‘continuous throurhout
any finite intervals in U :(u,b),nz, and ﬂl, respectivelyni/ Let
36 1im Rl(k,e) = 1im Ro(k,B) a O
k-»a k-b

uni formly in ©. Then 1if the max Rl(k,o) ond max Ro(k,8) exlst
g(.ﬂ.a otn,

for some ke U, there exlists a unique value of k2 U such that

3.7  max Ry(k,0) z max Ry(k,9) .

(=3

Gtﬂ? Ocnl
Proof:

Suppose for some k =~ k,E& U, max R,{},;,0) > max Rs(k,,9). For
° 'omzlko' omlekm

k<ky, Ry(k,9) 1s uniformly bounded by m;clle(ko,G)o Since Ry(k,Q)
e

is continuous in k and @, the m{;i Ry(k,9) exlists and 1s contlnuous
ot
2

Yor k< K,. Certainly the Su})l Re(k,G) i{s contlnuous in k, and for
e
b

k <k, sup Ro(k,9)p max Ry(k,,8). Since by 3.6 max Ro(k,0) 20 as
oen, 0ty 8eN,
k-»>a, there must be some k€& (a,k,) such that max Ry(k,0) = sup Ro(k,Q),
Otﬂz Ot-ﬂl
or, actually, max Ry(k,9) = max Ry(k,0). Furthermore in view of

otNy eml
Lemma 1 there 1s only one such value of k. If on the other hand

max Ro(k,Q) > max Rl(k,e) for scme k,eU, then, in 1like manner, the

restriction 3.6, Lemms 1, and the continuity hypothesis imply the

existence of a unique k¢ (k_,b) such that max Rl(k,o) = max Rz(k,O)o
o
| och, ey

Y

The interval U may of course be the opsn interval (-, o).



Corpllary 1. Let ¥(u),

and w?(e) be continuous and bounded

over U = (a,b),S,, and f3y, resnectively.-s—/ Then there oxists a

unique k¢ U such that max Ry(k,8) = max Rz(k e).

Qm.z eanl
Corollary 2. Let ¢
£,0
2
z.8 W (0) = Ofe ) o >0
\
- 8,0
3.9 w,(0) = Ole 1 § >0

be continuous functions throurhout any finlite Intervals in n2

and 4y, respectively.
less than ¥Y(o ) for any real u.

such that max Rq(k,8) = max R (k,9).

Let ¥(u) be continuous, positive , and

constant

« constant

o constant

ota, otn, £
Proof:
For &8 >0,
k
629 f egu d"iv(u)
(1) 1im wy(0)L(k[0)¢ 1im e -moo .
8900 990 f egu d‘."(u)
-~00
k (u+d,)e
e 2 a¥(u)
4 1lim =®
9300 f’eeu d¥{u)
k"’sz*A
k
(Sgﬂc)o J a¥lu)
4 1im 8 =@
d¥{n)
k+52+A

_5/'\}'(\1) 1s of course always bounded.

Then there exists a unlque k&€ U

:O:

and



Y fegu d¥u)
11m wy(9)[1-L(k]0)I§ tm & *

~Jw

(2) = . constant
@9~ 93=c0 / eeu aYiu)
-00
(u-‘l)O
fbe d¥(u)
< 1lim X . constant
= 9 Ke=d -t
©9-00 / 1 euQ d-.r(u)
-0
(k-SJ_)o ‘{wd‘ﬂu)
£ 1im 8 . constant
= 99w (k=dy~al@  k-é4-a
9300 e 1 f 17 anw)
-C0
-0,
Since
(3) 1lim wy(Q)L(kIQ) = lim wy(0)[1-L(k]0)] = wy(9,)L(k]6,)
@2 : 99~00
= wo(9,)[1-L(k[0,)] = O
for any k, the max Rl(k,e) and max Ra(k,e) exist for any k.'
Qtny, o8Ny
The min «(0) and min «»{Q) are positive constants. Therefore,
een, een,

for Q€fl,,



«10w

§,0 ,k
(4) wy(@)L(kjo)§e = [ ¢° aWu). constant
)

7.8

(§5+u) (0-0,+1) (d,+u) (9, 1)
4!0 Chs ° o 2™ ° d¥(u). constant

< (S5t (0-0,41) [k (d,4u)(Q,-1)
e

T g ‘/'

=00

dY(u) ¢ constant

$otk Lk (S ru)(0.«1)
. ot Jr e( otu) (0,

¢ d¥{u) « constant,
-00
and similarly, for Ozﬂl g
Ked

(u-d;) (0 #1)
(8) wy@)[1-L(klog e * [T o HTO

4

d¥(u) . constant,

The inequal itles (4) and (5) demonstrate that 3.6 of Theorem B
is satisfied. The conclusion of Corollary 2 follows.

Theorem B serves orimarlly as & criterion for determining
whether or not minimax liVelihood ratio tests exist in particular
cases, The corollaries to Theorem B are interesting as applications
of this criterion in the anulysis of certeln classes of sampling
distributions and st functions. Individual cases could of course

be subjected to a much more direct analysis.

4. Remarks on the Discrete Case. The generality of the

family of distributions introduced in 3.1 should not be overlooked:
it incluces many of the most important distributions encocuntered
in statistics, such as the nermal, bincmlal, and Polsson distribue

ticna. Sunnose the disiribution under consideration in this class



~11l-

1s a discrete one, and su»vose that ¥{u) assumes jumps at each
value of a denumerable sequence in w ich the values are placed
in order of Increasins marsnitude. YFor example, in the binomial
distribution, v = 0,1,2,...,n. In reneral it vlll not be nossible

to find a value of k in such a sequence so that max Rl(k,O) = max Ra(k,O)o

9‘“‘2 :nn-l
However, provided that all other condltions of Theorem B are

satisfied except for the continulty of ¥(u), it will be possible

to find a pair (ko, k‘;) such that

4,1 max Ry(k ©) < max R,(k.,0)
[ ] ?
4,2 max Rq(k_,0)> max R,(k_,9)
o, 1'% oen, 27077

where k; 1s the next larger value in the sequence than k,. The
minimax procedure is then a convex linear mixture of two procecdures

involving k, and k;, a8 mixture determined by

4.3 max [fR,(%,,0) + (1~f)31(k:,.93 = g?glfma<ko'°’+ (1=£)Ry(k,,0)],

where 0< £<1.
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